YKYR Smart Contract Wallet: Granular, role-based

permission wallet structure

Abstract. The YKYR Smart Contract Wallet is a solution designed to bring
unparalleled granularity, security, and flexibility to blockchain interactions.
Unlike traditional wallets or existing account abstraction solutions, it introduces
a highly granular, role-based permission system that allows users to delegate
specific functionalities to their task-specific agents without compromising

overall wallet security.

Keywords: Account Abstraction, Proxy Design, TEE

Table of Contents

1. Introduction
2. Background and Motivation
3. Technical Architecture
o Contract Components
m YKYRWallet Implementation
m YKYRWallet Factory
o Roles and Permissions
m Owner
m Proxy Account
m Relayer Account
o Data Flow and Interactions
4. Key Features
o Wallet Initialization

o Role Management

o

o

Data Submission Mechanisms
m Auto Submission
m Relayer Submission

Reward Management

5. Security Considerations

o

o

O

o

Upgradability and Proxy Patterns
Signature Verification
Replay Protection (Nonce Management)

Access Control

6. Use Cases

o

O

o

Decentralized Applications (DApps)
Decentralized Finance (DeFi)

Data Registry Interactions

7. Future Enhancements

o Potential Integrations

o Feature Roadmap

&. Conclusion

9. References

1. Introduction

The YKYR Smart Contract Wallet is a decentralized wallet solution crafted to meet the evolving
needs of the blockchain community. It offers a secure, role-based system that allows for efficient
data submission and interaction with decentralized services. By integrating proxy and relayer

accounts, the wallet enhances usability and transaction efficiency, making it an essential tool for

users who require advanced functionalities beyond traditional wallet capabilities.

2. Background and Motivation

As blockchain technology matures, the complexity of interactions within decentralized
ecosystems has increased. Traditional wallets often lack the flexibility and security features
necessary to handle intricate operations such as role delegation, off-chain computations, and

secure data submissions.
Challenges in Existing Wallets:

e Limited Access Control: Most wallets do not support granular permissions, making it
difficult to delegate specific tasks without exposing private keys.
e Data Submission Cost: Submitting data directly on-chain can be costly, hindering mass

adoption.
YKYR Wallet's Solution:
The YKYR Smart Contract Wallet addresses these challenges by introducing:

e Role-Based Permissions: Allows owners to assign proxy and relayer accounts with
specific permissions, enhancing security and operational efficiency.

o Relayer Mechanisms: Enables off-chain interactions, making gasless transactions
possible.

e Enhanced Security Features: Implements nonce management and signature verification

to protect against replay attacks and unauthorized access.

3. Technical Architecture

Contract Components
YKYR Wallet Implementation

The YKYR Wallet Implementation contract is the core of the wallet's functionality. It defines the
logic for role management, data submission, and reward handling. By utilizing an upgradable
pattern, the wallet ensures that it can adapt to future requirements without compromising

security.

Purpose:

e Role Management: Allows the owner to assign or revoke proxy and relayer accounts,
controlling who can perform certain actions on behalf of the owner.

e Tx handling: Provides functions for interacting with external contracts either directly or
via a relayer.

e Reward Management: Enables the owner to set an explicit reward address, enabling

on-chain KYC if set accordingly.
YKYR Wallet Factory

The YKYR Wallet Factory contract is responsible for deploying new instances of the wallet. It
uses the clone (minimal proxy) pattern to create lightweight and efficient wallet instances for

users.
Purpose:

e Wallet Deployment: Allows for the creation of new wallet instances with minimal gas
costs.
e Initialization Options: Supports standard initialization and relayer-based initialization,

catering to different user needs.

Roles and Permissions
Owner

e Definition: The primary controller of the wallet with the highest level of permissions.
e Responsibilities:

o Assigning and revoking proxy and relayer accounts.

o Managing reward addresses and claiming rewards.

o Overseeing the overall security and functionality of the wallet.

Proxy Account

e Definition: An account authorized by the owner to perform specific actions on their
behalf.

o Responsibilities:
o Submitting data directly to data registries.

o Facilitating operations that require delegated authority.

Relayer Account

e Definition: An account that enables off-chain computations and interactions, acting as an
intermediary between the owner and the blockchain.
o Responsibilities:
o Executing transactions to perform on-chain.

o Submitting jobs to TEE pools and handling data submissions via relayer

functions.

4. Key Features

Role Management

The wallet allows the owner to manage roles dynamically, enhancing security and adaptability.

e Assigning Roles: The owner can assign proxy and relayer accounts, granting them

specific permissions.

e Revoking Roles: Roles can be revoked at any time, ensuring that access can be restricted

if needed.
e Combined Role Assignment: The relayer can facilitate the assignment of both proxy

and relayer accounts through owner-signed messages, streamlining the process.
Data Submission Mechanisms

The wallet provides efficient methods for submitting data to external services, optimizing for

security and cost.

Auto Submission

o Purpose: Allows the proxy account to submit data directly to a data registry.

e Advantages:
o Efficiency: Reduces the need for the owner to be involved in every transaction.

o Security: Ensures that only authorized accounts can submit data.
Relayer Auto Submission

e Purpose: Enables data submission and job execution via the relayer, leveraging off-chain
computations.
e Advantages:
o Cost Reduction: Minimizes gas fees by handling computations off-chain.
o Enhanced Security: Uses signature verification and nonce management to

prevent unauthorized actions.

Reward Management

The wallet includes mechanisms for managing and claiming rewards accumulated through its

operations.

e Setting Reward Address: The owner can designate an address where rewards will be
sent.

e Claiming Rewards: Accumulated rewards can be claimed by the owner, providing
incentives for the wallet's usage.

e Transparency: Events are emitted during reward updates and claims, ensuring

transparency in operations.

5. Security Considerations

Upgradability and Proxy Patterns

e Upgradeable Contracts: The wallet uses upgradable patterns to ensure that it can be
enhanced without losing its state or compromising security. Defining a governance
mechanism could later incentivize users to decide if a given version upgrade is needed or
not.

e Immutable Variables: Critical addresses like the data registry and TEE pool are set as

immutable to prevent unauthorized changes.

Tx Execution Protection

e Signature Verification: Ensures that only authorized actions are performed by verifying
signatures against known accounts.

e Nonce Usage: Each transaction includes a nonce, which is incremented after use to
ensure uniqueness. Protection Against Replay Attacks, by requiring the nonce to match
the expected value, the wallet prevents the reuse of signed messages.

e Role-Based Modifiers: Functions are restricted using modifiers that check the caller's
role (e.g., onlyOwner, onlyProxy, onlyRelayer).

e Strict Role Enforcement: Unauthorized attempts to call restricted functions are rejected,

maintaining the integrity of the wallet.

6. Use Cases

Decentralized Applications (DApps)

e Secure Data Management: DApps can leverage the wallet's ability to securely submit
and manage data within decentralized ecosystems.
e Role Delegation: Developers can assign proxy accounts to handle routine tasks,

improving efficiency.

Decentralized Finance (DeFi)

e Automated Transactions: The relayer mechanism allows for automated trading

strategies and staking without constant on-chain interaction.

e Asset Protection: The wallet's security features safeguard assets against unauthorized

access and transactions.

Data Registry Interactions

e [Efficient Data Submission: Users can submit data to registries with reduced gas costs
and improved speed via the relayer.
e TEE Pool Integration: By submitting jobs to TEE pools, users can engage in secure,

private computations necessary for sensitive applications.

7. Future Enhancements

Potential Integrations

e Cross-Chain Compatibility: Exploring interoperability with other blockchain networks
to expand the wallet's utility.
e Oracle Services: Integrating with oracle providers to access external data, enhancing the

wallet's capabilities in DeFi and other applications.
Feature Roadmap

e Multi-Signature Support: Implementing multi-signature functionality to require
multiple approvals for critical actions, enhancing security.

o User Interface Development: Developing intuitive interfaces for interacting with the
wallet, making advanced features accessible to non-technical users.

e Advanced Analytics: Providing tools for users to analyze wallet activity, helping them

make informed decisions.

8. Conclusion

The YKYR Smart Contract Wallet represents a significant advancement in decentralized wallet
solutions. By incorporating role-based permissions, relayer mechanisms, and robust security
measures, it addresses key challenges faced by users and developers in the blockchain space. The
wallet's flexibility and efficiency make it a valuable tool for a wide range of applications, from
DApps to DeFi. With planned future enhancements, the YK YR Wallet is poised to continue

evolving alongside the rapidly changing landscape of decentralized technology.

9. References

o OpenZeppelin Documentation: Guidance on secure smart contract development and
upgradable contract patterns.
e Ethereum Improvement Proposals (EIPs):
o EIP-712: Standard for typed structured data hashing and signing.
o EIP-1167: Proxy contract for minimal deployment of clones.
e Solidity Documentation: Official language documentation providing insights into best
practices and language features.
e Blockchain Security Resources: Articles and papers on signature verification, nonce

management, and smart contract security best practices.

